
© Galois, Inc 2021

Verifiable Binary Lifting
Joe Hendrix, Andrew Kent and Simon Winwood
Galois, Inc
HCSS 2021

1

© Galois, Inc 2021

What is Decompilation?
■ A compiler translates code written in a high-level language into a low level language for efficient

execution.

■ A decompiler reverses steps in this translation

2

uint64_t fib(uint64_t x) {
 if (x <= 1) {
 return x;
 } else {
 return fib(x-1)+fib(x-2);
 }
}

0000000000201000 fib:
 201000: 55 pushq %rbp
 201001: 4889e5 movq %rsp, %rbp
 201004: 4883ec20 subq $32, %rsp
 201008: 48897df0 movq %rdi, -16(%rbp)
 20100c: 48837df001 cmpq $1, -16(%rbp)
 201011: 0f870d000000 ja 13 <fib+0x24>
 201017: 488b45f0 movq -16(%rbp), %rax
 20101b: 488945f8 movq %rax, -8(%rbp)
 20101f: e934000000 jmp 52 <fib+0x58>
 201024: 488b45f0 movq -16(%rbp), %rax
 201028: 482d01000000 subq $1, %rax
 20102e: 4889c7 movq %rax, %rdi
 201031: e8caffffff callq -54 <fib>
 201036: 488b4df0 movq -16(%rbp), %rcx
 20103a: 4881e902000000 subq $2, %rcx
 201041: 4889cf movq %rcx, %rdi
 201044: 488945e8 movq %rax, -24(%rbp)
 201048: e8b3ffffff callq -77 <fib>
 20104d: 488b4de8 movq -24(%rbp), %rcx
 201051: 4801c1 addq %rax, %rcx
 201054: 48894df8 movq %rcx, -8(%rbp)
 201058: 488b45f8 movq -8(%rbp), %rax
 20105c: 4883c420 addq $32, %rsp
 201060: 5d popq %rbp
 201061: c3 retq

Compiler

© Galois, Inc 2021

Who uses decompilers?
■ Decompilers commonly used by reverse engineers to understand a program.

■ Decompile into a language understandable by people.

■ Engineer works with the decompiler to translate code into idiomatic code.

■ Without hints or existing source to target, it is generally impossible to recover the original source.

■ Information lost includes all the structure within function bodies such as original control flow
structure and local variables.

■ Much more information is lost when compiling with optimization.

■ More recent programs are aimed at using decompilers for program transformation and repair.

3

© Galois, Inc 2021

Decompilation for
Program Transformation
■ Researchers are increasingly looking at using decompilers to transform programs.

■ Patch code with vulnerabilities.

■ Extract functionality from legacy code for use in new applications.

■ Apply new compiler optimizations or insert security checks into legacy applications.

■ Port a program from one platform to another, e.g. x86 to WASM.

■ These new applications place greater emphasis on program correctness and may have less
emphasis on programmer understanding.

4

© Galois, Inc 2021

Compilation Toolchain

■ Decompilation needs to reverse these steps.

Source
Code

Headers

Frontend
Lowering

Optimization,
Machine Code
Generation and

Assembly

Compiler IR
e.g, LLVM Linking &

Use
Analysis

Executable

Object
Files

Static
Libraries

Dynamic
Libraries

LLVM clang compilation

5

© Galois, Inc 2021

Decompilation/Binary Lifting Tools
■ There are many such tools available:

■ Ghidra, IDA/Hex-Rays, Binary Ninja, McSema, RetDec, JEB, Grammatech, Phoenix, reopt

■ The problem space is very large:

■ Several large and complex instruction set architectures:
e.g., x86, x86_64, ARM 8A/7M, PPC, RISCV, …

■ Variety of operating systems and executable formats: PE, Elf, Macho

■ Language and toolchain specific features: e.g, GNU extensions, C++ vtables, eh_frame, …

■ Lack of specs for many features, and executables often out of spec (but still “work”).

6

© Galois, Inc 2021

Related Work
Assurance of Decompilation
■ Scalable Validation of Binary Lifters

Sandeep Dasgupta, Sushant Dinesh, Deepan Venkatesh, Vikram S. Adve, Christopher W. Fletcher
PLDI, 2020

■ Evolving Exact Decompilation 
Eric Schulte, Jason Ruchti, Matt Noonan, David Ciarletta, Alexey Loginov
Workshop on Binary Analysis Research, 2018

7

© Galois, Inc 2021

Program Recompilation
■ We have implemented an end-to-end recompilation tool called reopt.

■ Written in a modular fashion so components can be used on other use cases.
■ Core binary analysis component also used for verification of machine code.

Dead code

Necessary code

Application Reopt

Mission
optimized

binary

8

© Galois, Inc 2021

Three Step Process
Three Step Process

1. Decompilation

2. Recompilation

3. Relinking

9

© Galois, Inc 2021

10
nweb
.exe

nweb
.ll

1.Decompilation

© Galois, Inc 2021

11
nweb
.exe

nweb-opt
.o

nweb
.ll

2. Recompilation

1.Decompilation

© Galois, Inc 2021

12
nweb-opt
.exe

nweb
.exe

nweb-opt
.o

nweb
.ll

1.Decompilation

3. Relinking

2. Recompilation

Decompilation Pipeline13
Extract Contents

.text

.data/.bss

.eh_frame

Program hdrs

Sections

Symbols

.debug_…

Relocations

LLVM
Generation

main
Invariant
Analysis

Function
Recovery

Signature
Analysis

Summarization

Interprocedural
Demand
Analysis

functionA
Invariant
Analysis

Function
Recovery

Function
Discovery

main

functionA

functionB

functionZ
functionB

Invariant
Analysis

Function
Recovery

External
Declarations

Constants
(String Pool)

Functions

© Galois, Inc 2021

Supported Features
■ Analysis component has large coverage of x86_64, ARM and PowerPC ISAs

■ x86_64 includes significant SSE/AVX support, some FPU/MMX support.

■ Invariant inference and LLVM generation limited to x86_64 ISA.

■ x86_64 coverage is a more limited.

■ Static and dynamically linking executables.

■ Extracting information from debug and .eh_frame data.

14

© Galois, Inc 2021

Handling Failures
Pipeline steps may fail, and reopt recovers as much as it can.
1. Elf files sometimes inconsistent or use extensions we do not support.
2. Discovery may fail to find all functions or spurious code.

■ Funcitions only indirectly referenced in structs primary failure to find.
■ Spurious code from no-return functions.

3. Function argument analysis is main limitation currently.
■ Lack mechanism for inferring arguments to externally linked functions.

4. Invariant analysis and function recovery do not support full instruction set.

15

© Galois, Inc 2021

Interoperability
■ Can export intermediate results at each stage of

pipeline.

■ VSCode extension under development.

■ Binary analysis plugins for Ghidra and Binary Ninja
developed on previous projects.

16

© Galois, Inc 2021

Verification

17

© Galois, Inc 2021

Verification Properties
Recompilation Soundness

■ Every observable execution in the LLVM should be possible in the machine code program.

Verification Soundness

■ If a property is true of the raised program, then it should be true of the machine code program.

18

t ∈ traces(PLLVM) ⇒ ∃ t’ ∈ traces(PMC), t ≡ t’

© Galois, Inc 2021

Observational Equivalence
■ Our current notion of equivalence is based on event traces.

■ Required events include:

■ Writes to non-stack addresses.

■ Other operations that may raise signals (e.g., divide-by-zero).

■ System calls

■ Internally, we make additional equivalence checks for compositional purposes.

19

© Galois, Inc 2021

Verification Approaches
1. Build a verified decompiler using

interactive theorem proving.

20
2. Use automation to check program

equivalence after generation.

© Galois, Inc 2021

Verification Approaches
1. Build a verified decompiler using

interactive theorem proving.

■ Decompilation is an open-ended problem.

■ Very complex to implement, and needs
continued improvement.

21
2. Use automation to check program

equivalence after generation.

■ Program equivalence is ordinarily
undecidable…

■ However, the decompiler output is
structurally similar to input binary.

■ We have developed a compositional
approach that checks equivalence of
basic blocks using SMT solving.

© Galois, Inc 2021

Verification Approach

Generated LLVM

Original Binary

Generated Annotations reopt-vcg SMTLIB Problems

Correctness claim: If all SMTLIB SAT problems are unsat, then the generated LLVM refines the original binary

■ We have implemented a verifier based on translation validation.

22

© Galois, Inc 2021

VCG Implementation
■ The implementation of reopt-vcg is independent of reopt itself.

23

Reopt
■ Written in Haskell
■ Disassembler based on udis86.
■ Custom x86_64 semantics.
■ Haskell LLVM-pretty library used

for generating LLVM.

reopt-vcg
■ Written in Lean 4

■ Long-term goal is to verify reopt-vcg.
■ Disassembler from LLVMMC.
■ UIUC K x86_64 semantics.
■ libllvm used for parsing

© Galois, Inc 2021

Lean 4
■ Lean 4 is a new programming language and theorem prover.

■ Publicly available but not officially released yet.
■ Functional language based on dependent type theory.
■ Compiles to efficient C code; No cyclic data-structures.
■ Self hosting - Largely written in Lean itself.

■ Builds on Lean 3
■ Mathlib — a large community effort to formalize mathematics.
■ ~450kloc of definitions and theorems as of January 2021.

24

© Galois, Inc 2021

Satisfiability Modulo Theories (SMT)
Solvers
■ SMT Solvers can automatically prove theorems involving specific theories.

■ A theory has one or more types (called sorts in SMT) along with operations.
■ There are combination methods that allow theory solvers to work together.
■ reopt-vcg uses bitvectors, arrays (with a partial equivalence extension), and uninterpreted

functions.
■ SMT solving is NP-hard (some theories are more difficult), but a lot of work has gone into

making it tractable.

25

SMT-COMP 2021
https://smt-comp.github.io/

© Galois, Inc 2021

Compositional Proofs
■ The key to making automation tractable is to decompose the overall equivalence of programs into many

smaller proofs.
■ Instead of asking:

■ We instead ask solvers to answer many questions of the form:

■ For a compositional strategy, we need
■ All the assumptions needed to make the statement true.
■ Check that the assumptions hold when jumping from one block to another.

26

Is LLVM Program P equivalent to machine code program Q?

Is this effect in a LLVM basic block B equivalent to this effect in the machine code?

© Galois, Inc 2021

Compositional Properties
■ Reopt-VCG’s compositional strategy enforces

■ Functions respect the ABI (how arguments are passed, callee-saved registers, etc)

■ The size of each stack frame is bounded to at most a page and all stack accesses are in
bounds.

■ Needed to avoid accessing heap memory via stack pointers.

■ Callee saved information is saved and persisted and not modified by the function.

27

main
Invariant
Analysis

Function
Recovery

© Galois, Inc 2021

Getting Reopt
■ reopt and reopt-vcg are publicly available under open source libraries.

■ You can try it out online through Gitpod, download a Docker image, or use prebuilt binaries.

28

https://github.com/GaloisInc/reopt

© Galois, Inc 2021

Some Observations
■ The binary analysis ecosystem has a rich variety of tools.

■ Made much easier by extensive documentation and open-source libraries.
■ Prefer libraries that provide semantics as data or a DSL rather than code.

■ Large and complex instruction sets represent a significant but understood challenge.
■ Operating system, debug and linker extensions challenging:

■ Lack of consistent documentation
■ Large variety of extensions
■ Implementations make different choices and change regularly.

29

© Galois, Inc 2021

Thank you

30 The project depicted is sponsored by the Office of Naval Research under Contract No. N68335-17-C-0558. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Office of Naval Research.

Acknowledgements:

■ Guannan Wei of Purdue implemented an early prototype of reopt-vcg.

■ Rob Dockins (Galois) wrote the Lean LLVM bindings.

■ Leonardo de Moura and Sebastian Ulrich for help with Lean 4.

■ The CVC4 team for the partial array equality extension to CVC4.

■ Andrei Stefanescu (Galois) and the UIUC K Semantics group for their x86_64 semantics.

